-
Computational Statistics
-
Machine Learning
-
Statistical Methodology
-
Statistical Theory
Computational Statistics
Machine Learning
Statistical Methodology
Statistical Theory
Faculty
George Deligiannidis
Computational Statistics, Monte Carlo methods
Arnaud Doucet
Computational Statistics, Monte Carlo methods
Geoff Nicholls
Statistical modeling, Bayes Methods, Monte Carlo Methods.
Tom Rainforth
Machine learning, Bayesian inference, Probabilistic programming, Deep generative models
Post-docs
M. Azim Ansari
Statistical Genetics, Evolution, Host Pathogen Interactions, Computational Biostatistics, Machine Learning, Bayesian Statistics
Emile Mathieu
Probabilistic inference, Deep learning, Generative models, Representation Learning, Geometry
George Nicholson
Computational biostatistics, machine learning, precision medicine
Graduate Students
Shahine Bouabid
Kernel Methods, Gaussian processes, Climate emulation
Anthony Caterini
High-Dimensional Statistics, Monte Carlo Methods, Variational Inference
Sam Davenport
Gaussian Processes, fMRI data, Resampling methods, Random Field Theory
Fabian Falck
Probabilistic Deep Learning, Deep Generative Models, Causality, Applications in Health
Tyler Farghly
Learning theory, Optimisation, Monte Carlo methods
Edwin Fong
Bayesian inference under model misspecification, Bayesian nonparametrics
Adam Foster
Probabilistic machine learning, deep learning, unsupervised representation learning, optimal experimental design, probabilistic programming
Frauke Harms
combinatorics, computational complexity, Bayesian nonparametrics, machine learning, stochastic geometry
Bobby He
Machine learning, deep learning, uncertainty quantification
Desi R. Ivanova
Bayesian Inference, Statistical Machine Learning, Optimal Experimental Design
Jannik Kossen
Active Learning, Bayesian Deep Learning, Transformers
Francesca Panero
Bayesian random graphs, Bayesian nonparametrics, disclosure risk
Emilia Pompe
MCMC methods, Bayesian statistics
Tim Reichelt
Probabilistic Programming, Probabilistic Inference
Tim G. J. Rudner
Probabilistic inference, reinforcement learning, Gaussian Processes
Jean-Francois Ton
Kernel methods, Meta-learning
Hanwen Xing
Computational methods, Bayesian inference
Schyan Zafar
Monte Carlo methods, Multivariate stochastic processes
Alumni
- Louis Aslett
- Marco Battiston
- Benjamin Bloem-Reddy
- Ryan Christ
- Bradley Gram-Hansen
- Leonard Hasenclever
- Ho Chung Leon Law
- Juho Lee
- Zhu Li
- Thibaut Lienart
- Xiaoyu Lu
- Simon Lyddon
- Chris J. Maddison
- Kaspar Märtens
- Xenia Miscouridou
- Valerio Perrone
- Dominic Richards
- Andrew Roth
- Patrick Rubin-Delanchy
- Sebastian Schmon
- Stefan Webb
- Matthew Willetts
- Chieh-Hsi (Jessie) Wu
- Yuan Zhou