Development Status  GitHub   Log   Log (last update)


Edit Page

Robin Evans

Robin Evans

Graphical models, causality, algebraic statistics

I am an Associate Professor and Fellow of Jesus College. My research interests are in graphical models, causality and algebraic statistics.

Publications

2023

  • T. S. Richardson , R. J. Evans , J. M. Robins , I. Shpitser , Nested Markov properties for acyclic directed mixed graphs, Annals of Statistics, vol. 51, no. 1, 334–361, 2023.
  • R. J. Evans , V. Didelez , Parameterizing and simulating from causal models, Journal of the Royal Statistical Society, Series B (with discussion), 2023.
  • R. J. Evans , Latent-free equivalent mDAGs, Algebraic Statistics, 2023.

2022

  • K. Kusi-Mensah , R. Tamambang , T. Bella-Awusah , S. Ogunmola , A. Afolayan , E. Toska , L. Hertzog , W. Rudgard , R. J. Evans , O. Omigbodun , Accelerating progress towards the sustainable development goals for adolescents in Ghana: a cross-sectional study, Psychology, Health & Medicine, vol. 27, no. sup1, 49–66, 2022.
  • J. Fawkes , R. J. Evans , D. Sejdinovic , Selection, ignorability and challenges with causal fairness, in Conference on Causal Learning and Reasoning, 2022, 275–289.
  • B. Yao , R. J. Evans , Algebraic properties of HTC-identifiable graphs, Algebraic Statistics, vol. 13, no. 1, 19–39, 2022.

2021

  • R. J. Evans , Dependency in DAG models with hidden variables, in Uncertainty in Artificial Intelligence, 2021, 813–822.
  • E. Černis , R. J. Evans , A. Ehlers , D. Freeman , Dissociation in relation to other mental health conditions: An exploration using network analysis, Journal of Psychiatric Research, vol. 136, 460–467, 2021.

2020

  • R. J. Evans , Model selection and local geometry, Annals of Statistics, no. 6, 3514–3544, 2020.
  • Z. Hu , R. J. Evans , Faster algorithms for Markov equivalence, in Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI-20), 2020, vol. 2020.

2019

  • R. J. Evans , T. Richardson , Smooth, identifiable supermodels of discrete DAG models with latent variables, Bernoulli, vol. 25, no. 2, 848–876, 2019.
  • E. S. Allman , H. B. Cervantes , R. J. Evans , S. Hoşten , K. Kubjas , D. Lemke , J. A. Rhodes , P. Zwiernik , Maximum likelihood estimation of the latent class model through model boundary decomposition, Algebraic Statistics, vol. 10, no. 1, 51–84, 2019.

2018

  • R. J. Evans , Margins of discrete Bayesian networks, Annals of Statistics, vol. 46, no. 6A, 2623–2656, 2018.
  • I. Shpitser , R. J. Evans , T. S. Richardson , Acyclic Linear SEMs Obey the Nested Markov Property, in Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI-18), 2018, vol. 2018.

2017

  • C. Nowzohour , M. Maathuis , R. J. Evans , P. Bühlmann , Structure learning with bow-free acyclic path diagrams, Electronic Journal of Statistics, vol. 11, no. 2, 5342–5374, 2017.

2016

  • R. J. Evans , Graphs for margins of Bayesian networks, Scandinavian Journal of Statistics, vol. 43, no. 3, 625–648, 2016.
  • R. B. A. Silva , R. J. Evans , Causal Inference through a Witness Protection Program, Journal of Machine Learning Research, vol. 17, no. 56, 1–53, 2016.
  • A. Hitz , R. J. Evans , One-Component Regular Variation and Graphical Modeling of Extremes, Journal of Applied Probability, vol. 53, no. 3, 733–746, 2016.

2015

  • R. J. Evans , V. Didelez , Recovering from Selection Bias using Marginal Structure in Discrete Models, in Proceedings of Causal Inference Workshop, Uncertainty in Artificial Intelligence, 2015.
  • R. J. Evans , Conditional distributions and log-linear parameters, Electronic Journal of Statistics, vol. 9, no. 1, 475–491, 2015.

2014

  • R. J. Evans , T. S. Richardson , Markovian acyclic directed mixed graphs for discrete data, Annals of Statistics, vol. 42, no. 4, 1452–1482, 2014.

2013

  • R. J. Evans , A. Forcina , Two algorithms for fitting constrained marginal models, Computational Statistics and Data Analysis, vol. 66, 1–7, 2013.
  • I. Shpitser , T. Richardson , R. J. Evans , J. Robins , Sparse nested Markov models with log-linear parameters, in Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-13), 2013, 576–585.
  • R. J. Evans , T. S. Richardson , Marginal log-linear parameters for graphical Markov models, Journal of the Royal Statistical Society: Series B, vol. 75, no. 4, 743–768, 2013.

2012

  • R. J. Evans , Graphical methods for inequality constraints in marginalized DAGs, in Machine Learning for Signal Processing, 2012.
  • I. Shpitser , T. Richardson , J. M. Robins , R. J. Evans , Parameter and Structure Learning in Nested Markov Models, in UAI Workshop on Structure Learning, 2012.

2011

  • T. S. Richardson , R. J. Evans , J. M. Robins , Transparent parameterizations of models for potential outcomes, Bayesian Statistics, vol. 9, 569–610, 2011.

2010

  • R. J. Evans , T. S. Richardson , Maximum likelihood fitting of acyclic directed mixed graphs to binary data, in Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI-10), 2010, 177–184.